Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction

Author:

Su H.1,McCabe M. F.1,Wood E. F.1,Su Z.2,Prueger J. H.3

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

2. International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, Netherlands

3. National Soil Tilth Research Laboratory, Ames, Iowa

Abstract

Abstract The Surface Energy Balance System (SEBS) model was developed to estimate land surface fluxes using remotely sensed data and available meteorology. In this study, a dual assessment of SEBS is performed using two independent, high-quality datasets that are collected during the Soil Moisture–Atmosphere Coupling Experiment (SMACEX). The purpose of this comparison is twofold. First, using high-quality local-scale data, model-predicted surface fluxes can be evaluated against in situ observations to determine the accuracy limit at the field scale using SEBS. To accomplish this, SEBS is forced with meteorological data derived from towers distributed throughout the Walnut Creek catchment. Flux measurements from 10 eddy covariance systems positioned on these towers are used to evaluate SEBS over both corn and soybean surfaces. These data allow for an assessment of modeled fluxes during a period of rapid vegetation growth and varied hydrometeorology. Results indicate that SEBS can predict evapotranspiration with accuracies approaching 10%–15% of that of the in situ measurements, effectively capturing the temporal development of surface flux patterns for both corn and soybean, even when the evaporative fraction ranges between 0.50 and 0.90. Second, utilizing high-resolution remote sensing data and operational meteorology, a catchment-scale examination of model performance is undertaken. To extend the field-based assessment of SEBS, information derived from the Landsat Enhanced Thematic Mapper (ETM) and data from the North American Land Data Assimilation System (NLDAS) were combined to determine regional surface energy fluxes for a clear day during the field experiment. Results from this analysis indicate that prediction accuracy was strongly related to crop type, with corn predictions showing improved estimates compared to those of soybean. Although root-mean-square errors were affected by the limited number of samples and one poorly performing soybean site, differences between the mean values of observations and SEBS Landsat-based predictions at the tower sites were approximately 5%. Overall, results from this analysis indicate much potential toward routine prediction of surface heat fluxes using remote sensing data and operational meteorology.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3