Affiliation:
1. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
Abstract
Abstract
A newly developed technique for airborne dual-Doppler observations with the Wyoming Cloud Radar is used to characterize the velocity fields in vertical planes across cumulus turrets. The clouds sampled were continental in nature, with high bases (near 0°C) and with depths of 2–3 km. Clear evidence was found that the clouds evolved through sequences of bubbles, or thermals, with well-defined toroidal circulations, or vortex rings. The ring core and tube diameters were about 200–600 m, leading to turret sizes of 1–2 km in the horizontal. The largest updraft speeds were observed in the ring centers, but regions of turbulent, ascending air extended behind the thermals to distances comparable with the toroid sizes. Vertical shear of ambient winds, when present, led to a tilting of the updrafts and toroids. Patterns in the reflectivity and velocity fields indicated regions of major intrusions into the thermals, accompanied by entrainment of ambient air, or recycling of larger hydrometeors, depending on their location. In addition, at the upper cloud/environment interface, instability nodes contributed to further entrapment of cloud-free air. The observations presented in this paper constitute clear demonstrations and quantitative characterization of vortical circulations in growing cumulus turrets; they should provide a more reliable basis for the assessment of simulations and of model parameterizations.
Publisher
American Meteorological Society
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献