A Mass-Conserving Quasi-Monotonic Filter for Use in Semi-Lagrangian Models

Author:

Kaas Eigil1,Nielsen Joakim R.1

Affiliation:

1. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Abstract

Abstract A new mass-conserving and quasi-monotonic antidiffusive filter has been designed for application in semi-Lagrangian-type models. The filter redistributes local mass such that the resulting values are brought closer to target values. The target values, in turn, are specified from a nonlinear antidiffusion of the original nonfiltered forecast. To achieve quasi-monotonicity, the target values are constrained to a certain interval, defined by the minimum and maximum value of the upstream grid cells surrounding the semi-Lagrangian departure point. Allowing a less local reorganization of mass the filter can be made fully monotonic and positive definite. The filter has been applied to the recently developed locally mass-conserving semi-Lagrangian (LMCSL) scheme. A number of idealized test simulations in one and two dimensions demonstrates that the combined scheme is stable and quasi monotonic. Furthermore, the accuracy is enhanced considerably as compared to the original LMCSL scheme, particularly near sharp changes in gradients. When tested in the geophysical flow environment of a shallow-water model, the proposed filter, in practice, ensures monotonicity and positive definiteness without generation of spurious features. In its present implementation the computational cost of the combined scheme is approximately twice the cost of the LMCSL scheme.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Dimensional Simulation of Scalar Transport in Large Shallow Water Systems Using Flux-Form Eulerian–Lagrangian Method;Journal of Hydraulic Engineering;2021-02

2. Introduction;Semi-Lagrangian Advection Methods and Their Applications in Geoscience;2020

3. Bibliography;Semi-Lagrangian Advection Methods and Their Applications in Geoscience;2020

4. Applications of semi-Lagrangian methods in the geosciences;Semi-Lagrangian Advection Methods and Their Applications in Geoscience;2020

5. Construction of the SILAM Eulerian atmospheric dispersion model based on the advection algorithm of Michael Galperin;Geoscientific Model Development;2015-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3