Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models

Author:

Pleim Jonathan E.1,Xiu Aijun2

Affiliation:

1. Atmospheric Sciences Modeling Division, Air Resources Laboratory, National Oceanic and Atmospheric Administration, Research Triangle Park, North Carolina

2. Environmental Programs, MCNC, North Carolina Supercomputing Center, Research Triangle Park, North Carolina

Abstract

Abstract Although the development of soil, vegetation, and atmosphere interaction models has been driven primarily by the need for accurate simulations of long-term energy and moisture budgets in global climate models, the importance of these processes at smaller scales for short-term numerical weather prediction and air quality studies is becoming more appreciated. Planetary boundary layer (PBL) development is highly dependent on the partitioning of the available net radiation into sensible and latent heat fluxes. Therefore, adequate treatmentof surface properties such as soil moisture and vegetation characteristics is essential for accurate simulation of PBL development, convective and low-level cloud processes, and the temperature and humidity of boundary layer air. In this paper, the development ofa simple coupled surface and PBL model, which is planned for incorporation into the Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM4/5), is described. The soil-vegetation model is based on a simple force-restore algorithm with explicit soil moisture and evapotranspiration. The PBL model is a hybrid of nonlocal closure for convective conditions and eddy diffusion for all other conditions. A one-dimensional version of the model has been applied to several case studies from field experiments in both dry desert-like conditions (Wangara) and moist vegetated conditions(First International Satellite Land Surface Climatology Project Field Experiment) to demonstrate the model's ability to realistically simulate surface fluxes as well as PBL development. This new surface-PBL model is currently being incorporated into the MM4-MM5 system.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 276 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3