Affiliation:
1. Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi
Abstract
Abstract
This paper examines the sensitivity of sea surface temperature (SST) to water turbidity in the Black Sea using the eddy-resolving (∼3.2-km resolution) Hybrid Coordinate Ocean Model (HYCOM), which includes a nonslab K-profile parameterization (KPP) mixed layer model. The KPP model uses a diffusive attenuation coefficient of photosynthetically active radiation (kPAR) processed from a remotely sensed dataset to take water turbidity into account. Six model experiments (expt) are performed with no assimilation of any ocean data and wind/thermal forcing from two sources: 1) European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA) and 2) Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS). Forced with ECMWF, experiment 1 uses spatially and monthly varying kPAR values over the Black Sea, experiment 2 assumes all of the solar radiation is absorbed at the sea surface, and experiment 3 uses a constant kPAR value of 0.06 m−1, representing clear-water constant solar attenuation depth of 16.7 m. Experiments 4, 5, and 6 are twins of 1, 2, and 3 but forced with NOGAPS. The monthly averaged model SSTs resulting from all experiments are then compared with a fine-resolution (∼9 km) satellite-based monthly SST climatology (the Pathfinder climatology). Because of the high turbidity in the Black Sea, it is found that a clear-water constant attenuation depth (i.e., expts 3 and 6) results in SST bias as large as 3°C in comparison with standard simulations (expts 1 and 4) over most of the Black Sea in summer. In particular, when using the clear-water constant attenuation depth as opposed to using spatial and temporal kPAR, basin-averaged rms SST difference with respect to the Pathfinder SST climatology increases ∼46% (from 1.41°C in expt 1 to 2.06°C in expt 3) in the ECMWF forcing case. Similarly, basin-averaged rms SST difference increases ∼36% (from 1.39°C in expt 4 to 1.89°C in expt 6) in the NOGAPS forcing case. The standard HYCOM simulations (expts 1 and 4) have a very high basin-averaged skill score of 0.95, showing overall model success in predicting climatological SST, even with no assimilation of any SST data. In general, the use of spatially and temporally varying turbidity fields is necessary for the Black Sea OGCM studies because there is strong seasonal cycle and large spatial variation in the solar attenuation coefficient, and an additional simulation using a constant kPAR value of 0.19 m−1, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) space–time mean for the Black Sea, did not yield as accurate SST results as experiments 1 and 4. Model–data comparisons also revealed that relatively large HYCOM SST errors close to the coastal boundaries can be attributed to the misrepresentation of land– sea mask in the ECMWF and NOGAPS products. With the relatively accurate mask used in NOGAPS, HYCOM demonstrated the ability to simulate accurate SSTs in shallow water over the broad northwest shelf in the Black Sea, a region of large errors using the inaccurate mask in ECMWF. A linear relationship is found between changes in SST and changes in heat flux below the mixed layer. Specifically, a change of ∼50 W m−2 in sub-mixed-layer heat flux results in a SST change of ∼3.0°C, a value that occurs when using clear-water constant attenuation depth rather than monthly varying kPAR in the model simulations, clearly demonstrating potential impact of penetrating solar radiation on SST simulations.
Publisher
American Meteorological Society