Two Improved Mixture Weibull Models for the Analysis of Wind Speed Data

Author:

Qin Xu,Zhang Jiang-she,Yan Xiao-dong

Abstract

AbstractIn this paper, the authors propose two improved mixture Weibull distribution models by adding one or two location parameters to the existing two-component mixture two-parameter Weibull distribution [MWbl(2, 2)] model. One improved model is the mixture two-parameter Weibull and three-parameter Weibull distribution [MWbl(2, 3)] model. The other improved model is the two-component mixture three-parameter Weibull distribution [MWbl(3, 3)] model. In contrast to existing literature, which has focused on the MWbl(2, 2) and the typical Weibull distribution models, the authors apply the MWbl(2, 3) model and MWbl(3, 3) model to fit the distribution of wind speed data with nearly zero percentages of null wind speed. The parameters of the two improved models are estimated by the maximum likelihood method in which the maximization problem is regarded as a nonlinear programming problem with only inequality constraints and is solved numerically by the interior-point method. The experimental results show that the mixture Weibull models proposed in this paper are more flexible than the existing models for the analysis of wind speed data in practice.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of probability distributions used for harnessing the wind energy potential: a case study from India;Stochastic Environmental Research and Risk Assessment;2024-03-04

2. Assessment of Wind Speed at Various Heights and Analysis of Wind Power Potential;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

3. EM-test for homogeneity in location-scale mixture model with a structural scale;Communications in Statistics - Simulation and Computation;2023-09-08

4. Wind power potential over India using the ERA5 reanalysis;Sustainable Energy Technologies and Assessments;2023-03

5. Goodness-of-Fit Analysis for Wind Speed Distributions Using Measurement Data from Domestic Wind Farms in Korea;Applied Science and Convergence Technology;2022-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3