An Observation-Based Investigation of Nudging in WRF for Downscaling Surface Climate Information to 12-km Grid Spacing

Author:

Bullock O. Russell1,Alapaty Kiran1,Herwehe Jerold A.1,Mallard Megan S.1,Otte Tanya L.1,Gilliam Robert C.1,Nolte Christopher G.1

Affiliation:

1. National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Abstract

AbstractPrevious research has demonstrated the ability to use the Weather Research and Forecasting model (WRF) and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal grid spacing of 36 km. Environmental managers and urban planners have expressed the need for even finer resolution in projections of surface-level weather to take into account local geophysical and urbanization patterns. In this study, WRF as previously applied at 36-km grid spacing is used with 12-km grid spacing with one-way nesting to simulate the year 2006 over the central and eastern United States. The results at both resolutions are compared with hourly observations of surface air temperature, humidity, and wind speed. The 12- and 36-km simulations are also compared with precipitation data from three separate observation and analysis systems. The results show some additional accuracy with the refinement to 12-km horizontal grid spacing, but only when some form of interior nudging is applied. A positive bias in precipitation found previously in the 36-km results becomes worse in the 12-km simulation, especially without the application of interior nudging. Model sensitivity testing shows that 12-km grid spacing can further improve accuracy for certain meteorological variables when alternate physics options are employed. However, the strong positive bias found for both surface-level water vapor and precipitation suggests that WRF as configured here may have an unbalanced hydrologic cycle that is returning moisture from land and/or water bodies to the atmosphere too quickly.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3