A Global Land Cover Climatology Using MODIS Data

Author:

Broxton Patrick D.1,Zeng Xubin1,Sulla-Menashe Damien2,Troch Peter A.3

Affiliation:

1. Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

2. Department of Earth and Environment, Boston University, Boston, Massachusetts

3. Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona

Abstract

AbstractGlobal land cover data are widely used in weather, climate, and hydrometeorological models. The Collection 5.1 Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) product is found to have a substantial amount of interannual variability, with 40% of land pixels showing land cover change one or more times during 2001–10. This affects the global distribution of vegetation if any one year or many years of data are used, for example, to parameterize land processes in regional and global models. In this paper, a value-added global 0.5-km land cover climatology (a single representative map for 2001–10) is developed by weighting each land cover type by its corresponding confidence score for each year and using the highest-weighted land cover type in each pixel in the 2001–10 MODIS data. The climatology is validated by comparing it with the System for Terrestrial Ecosystem Parameterization database as well as additional pixels that are identified from the Google Earth proprietary software database. When compared with the data of any individual year, this climatology does not substantially alter the overall global frequencies of most land cover classes but does affect the global distribution of many land cover classes. In addition, it is validated as well as or better than the MODIS data for individual years. Also, it is based on higher-quality data and is validated better than the Global Land Cover Characteristics database, which is based on 1 year of Advanced Very High Resolution Radiometer data and represents a widely used first-generation global product.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 244 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3