Future Hydrologic Extremes of the Red River Basin

Author:

Bertrand Darrian1,McPherson Renee A.2

Affiliation:

1. Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma

2. Department of Geography and Environmental Sustainability, University of Oklahoma, and South Central Climate Adaptation Science Center, Norman, Oklahoma

Abstract

AbstractHydrologic extremes of drought and flooding stress water resources and damage communities in the Red River basin, located in the south-central United States. For example, the summer of 2011 was the third driest summer in Oklahoma state history and the driest in Texas state history. When the long-term drought conditions ended in the spring of 2015 as El Niño brought record precipitation to the region, there were also catastrophic floods that caused loss of life and property. Hydrologic extremes such as these have occurred throughout the historical record, but decision-makers need to know how the frequency of these events is expected to vary in a changing climate so that they can mitigate these impacts and losses. Therefore, the goals of this study focus on how these hydrologic extremes impact water resources in the Red River basin, how the frequency of such events is expected to change in the future, and how this study can aid local water-resource managers and decision-makers. Heavy-precipitation events were defined at the historical 90th and 99th percentiles, and severe-drought events were identified at a threshold of the standardized precipitation evapotranspiration index’s value of less than or equal to −1. The results show an increase in the frequency of severe-drought events in the western Red River basin and a rise in heavy-rainfall events in the east by the end of the century, especially under RCP 8.5. Therefore, decision-makers and water-resource managers will likely need to prepare for both hydrologic extremes depending on their location within the basin.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3