Affiliation:
1. Department of Earth and Environment, Boston University, Boston, Massachusetts
Abstract
AbstractCities are home to the majority of humanity. Therefore, understanding the mechanisms that control urban climates has substantial societal importance to a variety of sectors, including public health and energy management. In this study, data from an urban sensor network (25 stations) and moderate-resolution remote sensing were used to explore how spatial variation in near-surface air temperature Ta, vapor pressure deficit (VPD), and land surface temperature (LST) depend on local variations in urban land use, both diurnally and seasonally, in the Boston, Massachusetts, metropolitan area. Positive correlations were observed between the amount of local impervious surface area (ISA) and both Ta and VPD. Heat-island effects peaked during the growing-season nighttime, when mean Ta and VPD increased by up to 0.02°C and 0.008 kPa, respectively, per unit ISA. Air temperature and VPD were strongly coupled, but their relationship exhibited significant diurnal hysteresis during the growing season, with changes in VPD generally preceding changes in Ta. Over 79% of the urban–rural difference in VPD was explained by differences in near-surface atmospheric water content, which the authors attribute to reduced evapotranspiration from lower canopy cover in Boston’s urban core. Changes in daytime heat-island intensity were mediated by seasonal feedbacks between vegetation transpiration and VPD forcing. Differences between LST and Ta showed weaker coupling in highly urbanized areas than in rural areas, with summertime surface-urban-heat-island intensity (based on LST) being up to 14°C higher than corresponding urban–rural differences in Ta.
Funder
National Aeronautics and Space Administration
National Science Foundation
Publisher
American Meteorological Society
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献