Monthly Extreme Temperature Trends in CMIP5 Hindcast/Prediction Simulations, 1981–2010 and 2006–35

Author:

Stegall Steve T.1,Kunkel Kenneth E.1

Affiliation:

1. Cooperative Institute for Climate and Satellites, North Carolina State University, and NOAA/National Centers for Environmental Information, Asheville, North Carolina

Abstract

AbstractA simple index of extreme surface (2 m) monthly temperature was analyzed over the conterminous United States for 13 models from the Coupled Model Intercomparison Project phase 5 (CMIP5) hindcast (1981–2010) and prediction (2006–35) datasets as well as the U.S. climate division dataset, version 2 (nClimDiv), as observations for 1981–2010. Results are analyzed for regions defined in the recent Third U.S. National Climate Assessment. There is good agreement between models and observations for all regions for the annual warm and cold indices except for the warm index in the Northwest. For seasonal values of the temperature index, model simulations generally agree with the sign of the observed seasonal trends in all regions except for the Northwest and a few seasons in the “warming hole” areas of the central and southeastern United States. Most individual ensemble member simulations agree with the sign of the observed trend. However, in all regions and seasons, some simulations, in the range of 10%–40% of all ensemble members, show opposite signs, indicating that even overall skillful projections can have substantial uncertainty. These results indicate that there is potential skill in use of GCMs to provide projections of hot and cold extremes on the 30-yr time scale. However, it is important to note that natural variability is comparable to the forced signal on this time scale and thus introduces uncertainty. Analysis of the future simulations (2006–35) indicates that warm extremes increase rapidly while cold extremes become substantially more rare.

Funder

National Science Foundation

Cooperative Agreement

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3