Cloud Impacts on Pavement Temperature and Shortwave Radiation

Author:

Walker Curtis L.1,Anderson Mark R.1

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

Abstract

AbstractForecast systems provide decision support for end users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex relationship exists between tire and pavement temperatures that affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focuses on forecast improvement by determining how cloud type impacts pavement temperature and the amount of shortwave radiation reaching the surface. The study region is the Great Plains where surface radiation data were obtained from the High Plains Regional Climate Center’s Automated Weather Data Network stations. Pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud-type identification was possible via the Naval Research Laboratory Cloud Classification algorithm, and clouds were subsequently sorted into five distinct groups: clear conditions, low clouds, middle clouds, high clouds, and cumuliform clouds. Statistical analyses during the daytime in June 2011 revealed that cloud cover lowered pavement temperatures by up to approximately 10°C and dampened downwelling shortwave radiation by up to 400 W m−2. These pavement temperatures and surface radiation observations were strongly correlated, with a maximum correlation coefficient of 0.83. A comparison between cloud-type group identified and cloud cover observed from satellite images provided a measure of confidence in the results and identified cautions with using satellite-based cloud detection.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3