Implementation of a Silver Iodide Cloud-Seeding Parameterization in WRF. Part II: 3D Simulations of Actual Seeding Events and Sensitivity Tests

Author:

Xue Lulin,Tessendorf Sarah A.,Nelson Eric,Rasmussen Roy,Breed Daniel,Parkinson Shaun,Holbrook Pat,Blestrud Derek

Abstract

AbstractFour cloud-seeding cases over southern Idaho during the 2010/11 winter season have been simulated by the Weather Research and Forecasting (WRF) model using the coupled silver iodide (AgI) cloud-seeding scheme that was described in Part I. The seeding effects of both ground-based and airborne seeding as well as the impacts of model physics, seeding rates, location, timing, and cloud properties on seeding effects have been investigated. The results were compared with those from Part I and showed the following: 1) For the four cases tested in this study, control simulations driven by the Real-Time Four Dimensional Data Assimilation (RTFDDA) WRF forecast data generated more realistic atmospheric conditions and precipitation patterns than those driven by the North America Regional Reanalysis data. Sensitivity experiments therefore used the RTFDDA data. 2) Glaciogenic cloud seeding increased orographic precipitation by less than 1% over the simulation domain, including the Snake River basin, and by up to 5% over the target areas. The local values of the relative precipitation enhancement by seeding were ~20%. Most of the enhancement came from vapor depletion. 3) The seeding effect was inversely related to the natural precipitation efficiency but was positively related to seeding rates. 4) Airborne seeding is generally more efficient than ground-based seeding in terms of targeting, but its efficiency depends on local meteorological conditions. 5) The normalized seeding effects ranged from 0.4 to 1.6 under various conditions for a certain seeding event.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3