The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance

Author:

Broadbent Ashley M.1,Krayenhoff E. Scott2,Georgescu Matei3,Sailor David J.3

Affiliation:

1. School of Geographical Sciences and Urban Planning, and Urban Climate Research Centre, Arizona State University, Tempe, Arizona

2. School of Geographical Sciences and Urban Planning, and Urban Climate Research Centre, Arizona State University, Tempe, Arizona, and School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

3. School of Geographical Sciences and Urban Planning, and Urban Climate Research Centre, and Global Institute of Sustainability, Arizona State University, Tempe, Arizona

Abstract

AbstractUtility-scale solar power plants are a rapidly growing component of the renewable energy sector. While most agree that solar power can decrease greenhouse gas emissions, the effects of photovoltaic (PV) systems on surface energy exchanges and near-surface meteorology are not well understood. This study presents data from two eddy covariance observational towers, placed within and adjacent to a utility-scale PV array in southern Arizona. The observational period (October 2017–July 2018) includes the full range of annual temperature variation. Average daily maximum 1.5-m air temperature at the PV array was 1.3°C warmer than the reference (i.e., non-PV) site, whereas no significant difference in 1.5-m nocturnal air temperature was observed. PV modules captured the majority of solar radiation and were the primary energetically active surface during the day. Despite the removal of energy by electricity production, the modules increased daytime net radiation Q* available for partitioning by reducing surface albedo. The PV modules shift surface energy balance partitioning away from upward longwave radiation and heat storage and toward sensible heat flux QH because of their low emissivity, low heat capacity, and increased surface area and roughness, which facilitates more efficient QH from the surface. The PV modules significantly reduce ground heat flux QG storage and nocturnal release, as the soil beneath the modules is well shaded. Our work demonstrates the importance of targeted observational campaigns to inform process-based understanding associated with PV systems. It further establishes a basis for observationally based PV energy balance models that may be used to examine climatic effects due to large-scale deployment.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3