Calculation and Evaluation of an Air-Freezing Index for the 1981–2010 Climate Normals Period in the Coterminous United States

Author:

Bilotta Rocky1,Bell Jesse E.2,Shepherd Ethan3,Arguez Anthony4

Affiliation:

1. NOAA/National Climatic Data Center, and ERT, Inc., Asheville, North Carolina

2. NOAA/National Climatic Data Center, and Cooperative Institute for Climate and Satellites–North Carolina, North Carolina State University, Asheville, North Carolina

3. NOAA/National Climatic Data Center, and STG, Inc., Asheville, North Carolina

4. NOAA/National Climatic Data Center, Asheville, North Carolina

Abstract

AbstractThe air-freezing index (AFI) is a common metric for determining the freezing severity of the winter season and estimating frost depth for midlatitude regions, which is useful for determining the depth of shallow foundation construction. AFI values represent the seasonal magnitude and duration of below-freezing air temperature. Departures of the daily mean temperature above or below 0°C (32°F) are accumulated over each August–July cold season; the seasonal AFI value is defined as the difference between the highest and lowest extrema points. Return periods are computed using generalized extreme value distribution analysis. This research replaces the methodology used by the National Oceanic and Atmospheric Administration to calculate AFI return periods for the 1951–80 time period, applying the new methodology to the 1981–2010 climate normals period. Seasonal AFI values and return period values were calculated for 5600 stations across the coterminous United States (CONUS), and the results were validated using U.S. Climate Reference Network temperature data. Return period values are typically 14%–18% lower across CONUS during 1981–2010 versus a recomputation of 1951–80 return periods with the new methodology. For the 100-yr (2 yr) return periods, about 59% (83%) of stations show a decrease of more than 10% in the more recent period, whereas 21% (2%) show an increase of more than 10%, indicating a net reduction in winter severity that is consistent with observed climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3