Simulation of Flow Fields in Complex Terrain with WRF-LES: Sensitivity Assessment of Different PBL Treatments

Author:

Liu Yujue1,Liu Yubao2,Muñoz-Esparza Domingo3,Hu Fei4,Yan Chao1,Miao Shiguang1

Affiliation:

1. Institute of Urban Meteorology, China Meteorological Administration, Beijing, China

2. National Center for Atmospheric Research, Boulder, Colorado, and Nanjing University of Information Science and Technology, Nanjing, China

3. National Center for Atmospheric Research, Boulder, Colorado

4. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Abstract

AbstractA multiscale modeling study of a real case has been conducted to explore the capability of the large-eddy simulation version of the Weather Research and Forecasting Model (WRF-LES) over Xiaohaituo Mountain (a game zone for the Beijing, China, 2022 Winter Olympic Games). In comparing WRF-LES results with observations collected during the Mountain Terrain Atmospheric Observations and Modeling (MOUNTAOM) field campaign, it is found that at 37-m resolution with LES settings, the model can reasonably capture both large-scale events and microscale atmospheric circulation characteristics. Employing the Shuttle Radar Topography Mission 1 arc s dataset (SRTM1; ~30 m) high-resolution topographic dataset instead of the traditional USGS_30s (~900 m) dataset effectively improves the model capability for reproducing fluctuations and turbulent features of surface winds. Five sensitivity experiments are conducted to investigate the impact of different PBL treatments, including YSU/Shin and Hong (SH) PBL schemes and LES with 1.5-order turbulence kinetic energy closure model (1.5TKE), Smagorinsky (SMAG), and nonlinear backscatter and anisotropy (NBA) subgrid-scale (SGS) stress models. In this case, at gray-zone scales, differences between YSU and SH are negligible. LES outperform two PBL schemes that generate smaller turbulence kinetic energy and increase the model errors for mean wind speed, energy spectra, and probability density functions of velocity. Another key finding is that wind field features in the boundary layer over complex terrain are more sensitive to the choice of SGS models than above the boundary layer. With the increase of model resolution, the effects of the SGS model become more significant, especially for the statistical characteristics of turbulence. Among these three SGS models, NBA has the best performance. Overall, this study demonstrates that WRF-LES is a promising tool for simulating real weather flows over complex terrain.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Natural Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference64 articles.

1. Seamless stratocumulus simulation across the turbulent gray zone;Boutle;Mon. Wea. Rev.,2014

2. Enhanced weather research and forecasting in support of the Beijing 2022 Winter Olympic and Paralympic Games;Chen;WMO Bull.,2018

3. Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models;Ching;Mon. Wea. Rev.,2014

4. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain;Chow;Atmosphere,2019

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3