Raindrop Size Distribution in a Midlatitude Continental Squall Line Measured by Thies Optical Disdrometers over East China

Author:

Chen Baojun1,Wang Jun2,Gong Dianli2

Affiliation:

1. Key Laboratory of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, Nanjing, China

2. Weather Modification Office of Shandong Province, Jinan, China

Abstract

AbstractDisdrometer data measured by ground-based optical disdrometers during a midlatitude continental squall line event on 18 August 2012 in Shandong Province, eastern China, are analyzed to study characteristics of raindrop size distribution (DSD). Four disdrometers simultaneously performed continuous measurements during the passage of the convective line. The convective line was partitioned into three regions: the convective center, leading edge, and trailing edge. Results show distinct differences in DSDs and integral rainfall parameters between the convective-center and the edge regions. The convective center has higher drop concentrations, larger mean diameters, and wider size distributions when compared with the edge regions. The leading and trailing edges have similar drop concentrations, but the latter has larger mean diameters and wider size distributions. The shape of DSD for the convective center is convex down, whereas it is convex upward in tropical continental squall lines, as reported in the literature. There is also spatial variability of the DSD and its integral rainfall parameters in the along-convective-line direction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3