Interaction of Urban Heat Island Effects and Land–Sea Breezes during a New York City Heat Event

Author:

Bauer Timothy J.1

Affiliation:

1. Naval Surface Warfare Center, Dahlgren Division, Dahlgren, Virginia

Abstract

AbstractThe state of knowledge of the effects of urban heat islands is advanced through investigation of a heat event in the highly complex coastal environment of New York City (NYC) by using the Weather Research and Forecasting (WRF) Model and surface observations in the NYC metropolitan area to evaluate heat retention at high- and low-temperature times during 18–20 July 2013. Urban surface air temperatures are 1°–2°C higher than rural temperatures throughout the daytime and increase to 3°–5°C higher during the night. Lack of a land–sea temperature gradient prevents development of a land breeze during the night. A land–sea temperature difference approaching 20°C leads to sea-breeze effects during 18 July that reduce daytime skin temperatures, but higher winds greatly reduce the sea breeze during 19 July. WRF Model data are generated using three urban parameterization schemes. The most sophisticated multilayer urban parameterization proves to be most accurate when compared with surface observation data. Errors between WRF Model data and surface observations are attributed to assigned coastal sea surface temperatures, excessive building drag, and too little urban heat retention. Adjustments to the input parameters to the multilayer scheme improved accuracy to lead to the control simulation used for urban heat island effects and land–sea-breeze analysis. NYC building interaction with the synoptic flow generates urban drag and wake effects, although relatively high winds limit their extent. Urban flow results and identified model errors support the development and deployment of the best urban parameterization scheme.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3