Impact of Upstream Urbanization on the Urban Heat Island Effects along the Washington–Baltimore Corridor

Author:

Zhang Da-Lin,Shou Yi-Xuan,Dickerson Russell R.,Chen Fei

Abstract

AbstractAlthough there has been considerable research on urban heat island (UHI) effects, most of the previous studies have attributed UHI effects to localized, surface processes. In this study, the impact of upstream urbanization on enhanced UHI effects is examined using surface observations and numerical simulations of an extreme UHI event that occurred on 9 July 2007 over Baltimore, Maryland. Under southwesterly wind, Baltimore experienced higher peak surface temperatures and higher pollution concentrations than did the larger urban area of Washington, D.C. Results from a coupled ultrahigh-resolution mesoscale–urban canopy model with 2001 National Land Cover Data show an advective contribution from upstream urbanization to the UHI event. This dynamical process is demonstrated by replacing Baltimore or its upstream urban areas by natural vegetation (in the model), indicating that the UHI effects could be reduced by as much as 25%. An analysis of the urban–bay interaction reveals the importance of horizontal wind direction in determining the intensity of bay breezes and the urban boundary layer structures. In addition, the vertical growth and structures of UHI effects are shown as layered “hot plumes” in the mixed layer with pronounced rising motions, and these plumes can be advected many kilometers downstream. These findings suggest that judicious land use and urban planning, especially in rapidly developing countries, could help to alleviate UHI consequences, including heat stress and smog. They also have important implications for improving the prediction of urban weather, including the initiation of moist convection, air quality, and other environment-related problems.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3