Moderation of Summertime Heat Island Phenomena via Modification of the Urban Form in the Tokyo Metropolitan Area

Author:

Adachi Sachiho A.1,Kimura Fujio1,Kusaka Hiroyuki2,Duda Michael G.3,Yamagata Yoshiki4,Seya Hajime4,Nakamichi Kumiko5,Aoyagi Toshinori6

Affiliation:

1. * Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

2. # Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan

3. @ National Center for Atmospheric Research,& Boulder, Colorado

4. ** National Institute for Environmental Studies, Tsukuba, Japan

5. ++ National Institute for Environmental Studies, Tsukuba, Japan, Tokyo Institute of Technology, Meguro, Japan

6. ## Meteorological Research Institute, Tsukuba, Japan

Abstract

AbstractThis study investigated the moderation of the urban heat island via changes in the urban form in the Tokyo metropolitan area (TMA). Two urban scenarios with the same population as that of the current urban form were used for sensitivity experiments: the dispersed-city and compact-city scenarios. Numerical experiments using the two urban scenarios as well as an experiment using the current urban form were conducted using a regional climate model coupled with a single-layer urban canopy model. The averaged nighttime surface air temperature in TMA increased by ~0.34°C in the dispersed-city scenario and decreased by ~0.1°C in the compact-city scenario. Therefore, the compact-city scenario had significant potential for moderating the mean areal heat-island effect in the entire TMA. Alternatively, in the central part of the TMA, these two urban-form scenarios produced opposite effects on the surface air temperature; that is, severe thermal conditions worsened further in the compact-city scenario because of the denser population. This result suggests that the compact-city form is not always appropriate for moderation of the urban-heat-island effect. This scenario would need to combine with other mitigation strategies, such as the additional greening of urban areas, especially in the central area. This study suggests that it is important to design a plan to adapt to higher urban temperatures, which are likely to ensue from future global warming and the urban heat island, from several perspectives; that is, designs should take into account not only climatological aspects but also impacts on urban inhabitants.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3