Affiliation:
1. Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
Abstract
AbstractThe adequacy of meteorological drought intensity threshold levels based on deviations of monthly precipitation totals from normal climatological conditions is reconsidered. The motivation for this study is the observation that reference classification systems are fixed for all climatological regions, and threshold levels have been proposed without regard for the statistical distribution of accumulated precipitation in space and time. This misrepresentation of precipitation variability may lead to erroneous estimates of meteorological drought onset in specific areas where natural breaks in the cumulative distribution of monthly precipitation do not fit the generalized classification systems. In this study, a new optimized classification system based on the nonparametric “Fisher–Jenks” algorithm is proposed for the estimation of meteorological drought intensity threshold levels from monthly precipitation totals. The optimized classification system is compared using the tabular accuracy index (TAI) to three fixed classification systems that are proposed in the literature and widely applied in the operational setting. An assessment of drought intensity classifications with optimized and fixed threshold levels shows that 1) six optimized categories most accurately divide precipitation totals into the most appropriate drought intensities, 2) optimized thresholds always give considerably improved drought intensity category allocations over fixed thresholds with the same number of categories, and 3) fixed thresholds underestimate the drought onset. An analysis of monthly and long-term drought frequency for Latin America has been conducted for assessing the spatial link between meteorological drought intensity categories computed with the Fisher–Jenks algorithm and different climate classifications. The results show a systematic match between climate variability in the region and spatial patterns of meteorological drought intensity.
Publisher
American Meteorological Society
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献