Using Climate Models to Estimate Urban Vulnerability to Flash Floods

Author:

Kermanshah A.1,Derrible S.2,Berkelhammer M.3

Affiliation:

1. Complex and Sustainable Urban Networks Laboratory, and Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, Illinois

2. Complex and Sustainable Urban Networks, and Department of Civil and Materials Engineering, and Institute for Environmental Science and Policy, University of Illinois at Chicago, Chicago, Illinois

3. Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, Illinois

Abstract

Abstract Climate change will impact urban infrastructure networks by changing precipitation patterns in a region. This study presents a novel vulnerability assessment framework for infrastructure networks against extreme rainfall-induced flash floods, with a specific application to transportation. The framework combines climate models, network science, geographical information systems (GIS), and stochastic modeling to compile a vulnerability surface (VS). Daily precipitation simulations for 2006–2100 from the Community Climate System Model, version 4 (CCSM4), are used to produce a stochastic simulation of extreme flash flood events in five U.S. cities—that is, Boston, Massachusetts; Houston, Texas; Miami, Florida; Oklahoma City, Oklahoma; and Philadelphia, Pennsylvania—under two different climate scenarios (RCP4.5 and RCP8.5). To assess the impact of these events, percentage drops in static (i.e., overall properties and robustness topological indicators) and dynamic (i.e., GIS accessibility and travel demand metrics) network properties are measured before and after simulated extreme events. The results of these metrics are inputs on a radar diagram to form a VS. Overall, the results show that changes in flash flood frequency due to climate change can have a significant impact on road networks, as was demonstrated recently in Houston, Texas. The magnitude of these impacts is chiefly associated with the geographic location of the cities and the size of the networks. The proposed framework can be reproduced in any city around the world, and researchers can use the results as guidelines for infrastructure design and planning purposes. Moreover, sensitivity analysis to varying greenhouse gas concentration trajectories can help local and national authorities to prioritize strategies for adaptation to climate change in more vulnerable regions.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3