Observed Rainfall Asymmetry in Tropical Cyclones Making Landfall over China

Author:

Yu Zifeng1,Wang Yuqing2,Xu Haiming3

Affiliation:

1. College of Atmospheric Sciences, and Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, and Shanghai Typhoon Institute, and Laboratory of Typhoon Forecast Technique, China Meteorological Administration, Shanghai, China

2. Department of Meteorology, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii

3. College of Atmospheric Sciences, and Pacific Typhoon Research Center, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

AbstractIn this study, the rainfall asymmetries in tropical cyclones (TCs) that made landfall in the Hainan (HN), Guangdong (GD), Fujian (FJ), and Zhejiang (ZJ) provinces of mainland China and Taiwan (TW) from 2001 to 2009 were analyzed on the basis of TRMM satellite 3B42 rainfall estimates. The results reveal that in landfalling TCs, the wavenumber 1 rainfall asymmetry shows the downshear to downshear-left maximum in environmental vertical wind shear (VWS), which is consistent with previous studies for TCs over the open oceans. A cyclonic rotation from south China to east China in the location of the rainfall maximum has been identified. Before landfall, the location of the rainfall maximum rotated from southwest to southeast of the TC center for TCs making landfall in the regions from HN to GD, TW, FJ, and ZJ. After landfall, the rotation became from southwest to northeast of the TC center from south China to east China. It is shown that this cyclonic rotation in the location of the rainfall maximum is well correlated with a cyclonic rotation from south China to east China in the environmental VWS between 200 and 850 hPa, indicating that the rainfall asymmetry in TCs that made landfall over China is predominantly controlled by the large-scale VWS. The cyclonic rotation of VWS is found to be related to different interactions between the midlatitude westerlies and the landfalling TCs in different regions. The results also indicate that the axisymmetric (wavenumber 0) component of rainfall generally decreased rapidly after landfall in most studied regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3