Impact of Flow-Dependent Horizontal Diffusion on Resolved Convection in AROME

Author:

Bengtsson Lisa,Tijm Sander,Váňa Filip,Svensson Gunilla

Abstract

AbstractHorizontal diffusion in numerical weather prediction models is, in general, applied to reduce numerical noise at the smallest atmospheric scales. In convection-permitting models, with horizontal grid spacing on the order of 1–3 km, horizontal diffusion can improve the model skill of physical parameters such as convective precipitation. For instance, studies using the convection-permitting Applications of Research to Operations at Mesoscale model (AROME) have shown an improvement in forecasts of large precipitation amounts when horizontal diffusion is applied to falling hydrometeors. The nonphysical nature of such a procedure is undesirable, however. Within the current AROME, horizontal diffusion is imposed using linear spectral horizontal diffusion on dynamical model fields. This spectral diffusion is complemented by nonlinear, flow-dependent, horizontal diffusion applied on turbulent kinetic energy, cloud water, cloud ice, rain, snow, and graupel. In this study, nonlinear flow-dependent diffusion is applied to the dynamical model fields rather than diffusing the already predicted falling hydrometeors. In particular, the characteristics of deep convection are investigated. Results indicate that, for the same amount of diffusive damping, the maximum convective updrafts remain strong for both the current and proposed methods of horizontal diffusion. Diffusing the falling hydrometeors is necessary to see a reduction in rain intensity, but a more physically justified solution can be obtained by increasing the amount of damping on the smallest atmospheric scales using the nonlinear, flow-dependent, diffusion scheme. In doing so, a reduction in vertical velocity was found, resulting in a reduction in maximum rain intensity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3