Application of Statistical Models to the Prediction of Seasonal Rainfall Anomalies over the Sahel

Author:

Badr Hamada S.1,Zaitchik Benjamin F.1,Guikema Seth D.2

Affiliation:

1. Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

2. Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, Maryland

Abstract

AbstractRainfall in the Sahel region of Africa is prone to large interannual variability, and it has exhibited a recent multidecadal drying trend. The well-documented social impacts of this variability have motivated numerous efforts at seasonal precipitation prediction, many of which employ statistical techniques that forecast Sahelian precipitation as a function of large-scale indices of surface air temperature (SAT) anomalies, sea surface temperature (SST), surface pressure, and other variables. These statistical models have demonstrated some skill, but nearly all have adopted conventional statistical modeling techniques—most commonly generalized linear models—to associate predictor fields with precipitation anomalies. Here, the results of an artificial neural network (ANN) machine-learning algorithm applied to predict summertime (July–September) Sahel rainfall anomalies using indices of springtime (April–June) SST and SAT anomalies for the period 1900–2011 are presented. Principal component analysis was used to remove multicollinearity between predictor variables. Predictive accuracy was assessed using repeated k-fold random holdout and leave-one-out cross-validation methods. It was found that the ANN achieved predictive accuracy superior to that of eight alternative statistical methods tested in this study, and it was also superior to that of previously published predictive models of summertime Sahel precipitation. Analysis of partial dependence plots indicates that ANN skill is derived primarily from the ability to capture nonlinear influences that multiple major modes of large-scale variability have on Sahelian precipitation. These results point to the value of ANN techniques for seasonal precipitation prediction in the Sahel.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference56 articles.

1. A survey of cross-validation procedures for model selection;Arlot;Stat. Surv.,2010

2. Controlling the false discovery rate: A practical and powerful approach to multiple testing;Benjamini;J. Roy. Stat. Soc.,1995

3. SST forcings and Sahel rainfall variability in simulations of the twentieth and twenty-first centuries;Biasutti;J. Climate,2008

4. Random forests;Breiman;Mach. Learn.,2001

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3