A Case Study of Cloud Radar Observations and Large-Eddy Simulations of a Shallow Stratiform Orographic Cloud, and the Impact of Glaciogenic Seeding

Author:

Chu Xia1,Geerts Bart1,Xue Lulin2,Pokharel Binod1

Affiliation:

1. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

2. Research Applications Laboratory, National Center for Atmospheric Research,a Boulder, Colorado

Abstract

AbstractThe impact of glaciogenic seeding on precipitation remains uncertain, mainly because of the noisy nature of precipitation. Operational seeding programs often target cold-season orographic clouds because of their abundance of supercooled liquid water. Such clouds are complicated because of common natural seeding from above (seeder–feeder effect) or from below (blowing snow). Here, observations, mainly from a profiling airborne Doppler radar, and numerical simulations are used to examine the impact of glaciogenic seeding on a very shallow (<1 km), largely blocked cloud that is not naturally seeded from aloft or from below. This cloud has limited but persistent supercooled liquid water, a cloud-base (top) temperature of −12°C (−16°C), and produces only very light snowfall naturally. A Weather Research and Forecasting Model large-eddy simulation at 100-m resolution captures the observed upstream stability and wind profiles and reproduces the essential characteristics of the orographic flow, cloud, and precipitation. Both observations and simulations indicate that seeding locally increases radar (or computed) reflectivity in the target area, even after removal of the natural trend between these two periods in a nearby control region. A model sensitivity run suggests that seeding effectively glaciates the mostly liquid cloud and substantially increases snowfall within the seeding plume. This is due to a dramatic increase in the number of ice particles and not to their size. The increased ice particle concentration facilitates snow growth by vapor deposition in a cloud the temperature range of which is conducive to the Bergeron process.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3