What Can We Conclude about the Real Aspect Ratios of Ice Particle Aggregates from Two-Dimensional Images?

Author:

Jiang Zhiyuan1,Oue Mariko1,Verlinde Johannes1,Clothiaux Eugene E.1,Aydin Kultegin2,Botta Giovanni3,Lu Yinghui3

Affiliation:

1. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania

3. Department of Meteorology and Atmospheric Science, and Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania

Abstract

AbstractA simple numerical experiment was performed to investigate the result published in many papers that measurements indicate that aggregates may be well represented as oblate spheroids with mean aspect ratio (semiminor axis to semimajor axis length) of 0.6. The aspect ratio measurements are derived from two-dimensional projections of complex three-dimensional aggregates. Here, aggregates were modeled as ellipsoids with semiprincipal axes of length a, b, and c, which include oblate spheroids (a = b) as a class, and the projected aspect ratios of large numbers of two-dimensional projections of them were sampled. When sampling oblate spheroids with aspect ratio 0.6 over random orientations, the mean projected aspect ratio is 0.746. A mean projected aspect ratio of 0.6 is obtained for an oblate spheroid with aspect ratio of 0.33. When sampling randomly oriented ellipsoids with semiminor axes (b, c) varying from 0.10 to 1.00 in steps of 0.01, representing many complex shapes, the mean projected aspect ratio is 0.595, close to the measured mean projected aspect ratio of aggregates of 0.6. These experiments demonstrate that the conclusion one may safely draw from the projected aspect ratio measurements is that the mean aspect ratio of aggregates is lower than 0.6. Moreover, the projected aspect ratio distributions from measurements suggest a mixture of aggregate shapes, rather than only oblate spheroids as is often assumed.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3