A Crop Model and Fuzzy Rule Based Approach for Optimizing Maize Planting Dates in Burkina Faso, West Africa

Author:

Waongo Moussa1,Laux Patrick2,Traoré Seydou B.3,Sanon Moussa4,Kunstmann Harald1

Affiliation:

1. Institute of Geography, University of Augsburg, Augsburg, and Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

2. Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

3. AGRHYMET Regional Centre, Niamey, Niger

4. Institute de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso

Abstract

AbstractIn sub-Saharan Africa, with its high rainfall variability and limited irrigation options, the crop planting date is a crucial tactical decision for farmers and therefore a major concern in agricultural decision making. To support decision making in rainfed agriculture, a new approach has been developed to optimize crop planting date. The General Large-Area Model for Annual Crops (GLAM) has been used for the first time to simulate maize yields in West Africa. It is used in combination with fuzzy logic rules to give more flexibility in crop planting date computation when compared with binary logic methods. A genetic algorithm is applied to calibrate the crop model and to optimize the planting dates at the end. The process for optimizing planting dates results in an ensemble of optimized planting rules. This principle of ensemble members leads to a time window of optimized planting dates for a single year and thereby potentially increases the willingness of farmers to adopt this approach. The optimized planting date (OPD) approach is compared with two well-established methods in sub-Saharan Africa. The results suggest earlier planting dates across Burkina Faso, ranging from 10 to 20 days for the northern and central part and less than 10 days for the southern part. With respect to the potential yields, the OPD approach indicates that an average increase in maize potential yield of around 20% could be obtained in water-limited regions in Burkina Faso. The implementation of the presented approach in agricultural decision support is expected to have the potential to improve agricultural risk management in these regions dominated by rainfed agriculture and characterized by high rainfall variability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3