Evaluation of Thunderstorm Predictors for Finland Using Reanalyses and Neural Networks

Author:

Ukkonen Peter1,Manzato Agostino2,Mäkelä Antti1

Affiliation:

1. Finnish Meteorological Institute, Helsinki, Finland

2. Osservatorio Meteorologico Regionale, Agenzia Regionale per la Protezione dell'Ambiente del Friuli-Venezia Giulia, Visco, Italy

Abstract

AbstractThis work evaluates numerous thunderstorm predictors and investigates the use of artificial neural networks (ANNs) for identifying occurrences of thunderstorms in reanalysis data. Environmental conditions favorable for deep, moist convection are derived from 6-hourly ERA-Interim reanalyses, while thunderstorm occurrence in the following 6 h over Finland is derived from lightning location data. By taking advantage of the consistency and large sample size (14 summers) provided by the reanalysis, complex multivariate models can be trained for a robust estimation of convective weather events from model data. This and other methods are used to yield information on the most effective convective predictors in a multivariate setting, which can also benefit the forecasting community. The best ANN found uses 15 inputs and received a Heidke skill score (HSS) of 0.51 on an independent test sample. This is a substantial improvement over the best predictor when used alone, the most unstable lifted index (MULI) with HSS = 0.40, the multivariate model having fewer false alarms in particular. After MULI, the most important ANN input was relative humidity near 700 hPa. Dry air aloft was associated with significantly lower thunderstorm probability and flash density regardless of convective available potential energy (CAPE). Other important parameters for thunderstorm development were vertical velocity and low-level θe advection. Finally, the Peirce skill score indicates a clear meridional gradient in skill for categorical forecasts, with higher skill in northern Finland. This analysis suggests that the difference in skill is real and associated with a steeper thunderstorm probability curve in the north, but further studies are needed for a physical explanation.

Funder

State Nuclear Waste Management Fund in Finland

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3