Regional Retrieval Processor for Direct Broadcast High-Resolution Infrared Data

Author:

Antonelli Paolo1,Revercomb Henry E.1,Giuliani Graziano2,Cherubini Tiziana3,Businger Steven3,Lyman Ryan3,Tjemkes Stephen4,Stuhlmann Rolf4,Moncet Jean-Luc5

Affiliation:

1. Space Science Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

2. Abdus Salam International Center for Theoretical Physics, Trieste, Italy

3. Mauna Kea Weater Center, Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

4. EUMETSAT, Darmstadt, Germany

5. Atmospheric Environmental Research, Inc., Boston, Massachusetts

Abstract

AbstractThe Space Science Engineering Center, in collaboration with the Mauna Kea Weather Center at the University of Hawai’i at Mānoa, has developed a regional retrieval processor for high-spectral-resolution infrared data. The core of the processor makes use of an inversion system, referred to as Mirto, which combines, in a Bayesian way, the a priori knowledge of the atmospheric state, based on available numerical weather prediction forecasts, with the physical information embedded in satellite observations. Forecast temperature and water vapor mixing ratio fields over the central North Pacific Ocean are adjusted to produce synthetic radiances closer and closer to the Suomi NPP Cross-track Infrared Sounder (CrIS) observations taken in clear-sky conditions. The paucity of synoptic observations over this area and the highly homogeneous background represented by the ocean provide a good framework for the implementation of this hyperspectral data inversion system. Nearly real-time (less than 60 min from overpass time) Internet publication of retrieved atmospheric profiles is made possible by the availability of a direct broadcast system that provides data from the Suomi NPP platform (CrIS and VIIRS). The main goal for the implemented system is to provide the forecasting community with products suitable for nowcasting applications and for optimal data assimilation. The implemented processor has been running routinely since August 2013. Validation based on the comparisons of retrievals with rawinsonde data from Hilo, Hawaii, and Lihue, Hawaii, and GPS-derived total precipitable water from four stations, performed over a time period of more than 1 year, shows a statistically significant improvement on the background atmospheric state used as a priori information.

Funder

Space Science Engineering Center, University of Wisconsin—Madison

Mauna Kea Weather Center, University of Hawaii

EUMETSAT

Mauna Kea Wether Center, University of Hawaii

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3