The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive Database of Simulated Pristine Crystals and Aggregate Particles, and Their Scattering Properties

Author:

Kuo Kwo-Sen1,Olson William S.2,Johnson Benjamin T.2,Grecu Mircea3,Tian Lin3,Clune Thomas L.4,van Aartsen Bruce H.5,Heymsfield Andrew J.6,Liao Liang3,Meneghini Robert4

Affiliation:

1. * Earth System Science Interdisciplinary Center/University of Maryland, College Park, College Park, Maryland

2. + Joint Center for Earth Systems Technology/University of Maryland, Baltimore County, Baltimore, Maryland

3. # Goddard Earth Sciences Technology and Research/Morgan State University, Baltimore, Maryland

4. @ NASA Goddard Space Flight Center, Greenbelt, Maryland

5. & Science Systems and Applications, Inc., Lanham, Maryland

6. ** National Center for Atmospheric Research,## Boulder, Colorado

Abstract

AbstractA 3D growth model is used to simulate pristine ice crystals, which are aggregated using a collection algorithm to create larger, multicrystal particles. The simulated crystals and aggregates have mass-versus-size and fractal properties that are consistent with field observations. The growth/collection model is used to generate a large database of snow particles, and the single-scattering properties of each particle are computed using the discrete dipole approximation to account for the nonspherical geometries of the particles. At 13.6 and 35.5 GHz, the bulk radar reflectivities of nonspherical snow particle polydispersions differ from those of more approximate spherical, homogeneous, ice–air particle polydispersions that have the same particle size distributions, although the reflectivities of the nonspherical particles are roughly approximated by polydispersions of spheres of 0.1–0.2 g cm−3 density. At higher microwave frequencies, such as 165.5 GHz, the bulk extinction (and scattering) coefficients of the nonspherical snow polydispersions are comparable to those of low-density spheres, but the asymmetry parameters of the nonspherical particles are substantially less than those of spheres for a broad range of assumed spherical particle densities. Because of differences in the asymmetry of scatter, simulated microwave-scattering depressions using nonspherical particles may well exceed those of spheres for snow layers with the same vertical water path. It may be concluded that, in precipitation remote sensing applications that draw upon input from radar and/or radiometer observations spanning a range of microwave frequencies, nonspherical snow particle models should be used to properly interpret the observations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3