On the Performance of the Canadian Land Surface Scheme Driven by the ERA5 Reanalysis over the Canadian Boreal Forest

Author:

Alves M.1,Nadeau D. F.2,Music B.3,Anctil F.2,Parajuli A.2

Affiliation:

1. Department of Civil and Water Engineering, Université Laval, Quebec, and Ouranos, Montreal, and CentrEau, Université Laval, Quebec, Quebec, Canada

2. Department of Civil and Water Engineering, and CentrEau, Université Laval, Quebec, Quebec, Canada

3. Department of Civil and Water Engineering, Université Laval, Quebec, and Ouranos, Montreal, Quebec, Canada

Abstract

AbstractThe Canadian Land Surface Scheme (CLASS) has been applied over the years in coupled and uncoupled (offline) modes at local, regional, and global scales using various forcing datasets. In this study, CLASS is applied at a local scale in the offline configuration to evaluate its performance when driven by the ERA5 reanalysis. Simulated surface energy fluxes, as well as several other water balance components, are investigated at four sites across the Canadian boreal biome. The results from CLASS driven by ERA5 (CLASS-RNL) are compared with available in situ measurements, as well as with results from CLASS driven by observations (CLASS-CTL). Additional simulations are conducted to evaluate the effects of biases in the ERA5 precipitation, where CLASS is forced by ERA5 data, but with ERA5 precipitation being replaced by observed precipitation (CLASS-RNL-ObsP). The results show that simulated surface variables in CLASS-RNL are in good agreement with observations as well as with those simulated in CLASS-CTL. The CLASS-RNL captures well the observed annual cycles of the surface energy and water fluxes, as well as the year-to-year variation of snow depth, soil temperature, and soil moisture. A strong correlation is found between the observed and CLASS-RNL simulated snow depth and soil temperature. Biases in the ERA5 precipitation did not affect the simulation of soil state variables, whereas the simulated surface heat and water fluxes, as well as the snow depth, were significantly affected. For instance, the simulated runoff in CLASS-RNL is much higher than in CLASS-RNL-ObsP and CLASS-CTL at the most humid sites due to significant positive bias in ERA5 precipitation.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3