Affiliation:
1. College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
Abstract
AbstractThe hybrid precipitation index developed in Part I of this study is applied to investigate precipitation variability along the west coast of North America during the wet season November–March on monthly-to-interannual time scales. The variability in each of six regions considered in this study is negatively correlated with nearby 500-hPa geopotential height anomalies. Except in Southeast Alaska, these correlation patterns indicate that precipitation variability in each region is predominantly influenced by local atmospheric forcing analogous to the ridging of the westerly flow that has been studied extensively with regard to California drought variability. The first empirical orthogonal function (EOF) accounts for nearly all of the Southeast Alaska precipitation variability, which is controlled by the strength of the onshore flow rather than ridging. In association with this mode of variability, precipitation anomalies of opposite sign account for about 40% of the precipitation variance in Northern California and Oregon on all time scales. On short time scales, the second and third EOFs account primarily for precipitation variability in British Columbia/Washington and California, respectively. With increasing time scale, the third EOF diminishes in importance and the second EOF evolves into a pattern of synchronous precipitation anomalies of the same sign from British Columbia to Northern California. Precipitation variability in Southern California is only modestly related to precipitation elsewhere. With increasing time scale, Southern California precipitation variability becomes increasingly related to precipitation anomalies of opposite sign in Washington.
Publisher
American Meteorological Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献