A Hybrid Precipitation Index Inspired by the SPI, PDSI, and MCDI. Part II: Application to Investigate Precipitation Variability along the West Coast of North America

Author:

Chelton Dudley B.1,Risien Craig M.1

Affiliation:

1. College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

AbstractThe hybrid precipitation index developed in Part I of this study is applied to investigate precipitation variability along the west coast of North America during the wet season November–March on monthly-to-interannual time scales. The variability in each of six regions considered in this study is negatively correlated with nearby 500-hPa geopotential height anomalies. Except in Southeast Alaska, these correlation patterns indicate that precipitation variability in each region is predominantly influenced by local atmospheric forcing analogous to the ridging of the westerly flow that has been studied extensively with regard to California drought variability. The first empirical orthogonal function (EOF) accounts for nearly all of the Southeast Alaska precipitation variability, which is controlled by the strength of the onshore flow rather than ridging. In association with this mode of variability, precipitation anomalies of opposite sign account for about 40% of the precipitation variance in Northern California and Oregon on all time scales. On short time scales, the second and third EOFs account primarily for precipitation variability in British Columbia/Washington and California, respectively. With increasing time scale, the third EOF diminishes in importance and the second EOF evolves into a pattern of synchronous precipitation anomalies of the same sign from British Columbia to Northern California. Precipitation variability in Southern California is only modestly related to precipitation elsewhere. With increasing time scale, Southern California precipitation variability becomes increasingly related to precipitation anomalies of opposite sign in Washington.

Funder

Earth Sciences Division

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of New Integrated Drought Monitoring Model Taking into Account the Effects of Climate Anomalies;Journal of the Indian Society of Remote Sensing;2024-06-11

2. References;Data Analysis Methods in Physical Oceanography;2024

3. Comparison of Suitable Drought Indices for Over West Nusa Tenggara;Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering;2022-07-19

4. Spatiotemporal variability of annual drought severity, duration, and frequency from 1901 to 2020;Climate Research;2021

5. A Hybrid Precipitation Index Inspired by the SPI, PDSI, and MCDI. Part I: Development of the Index;Journal of Hydrometeorology;2020-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3