Spatial Distribution of Global Landscape Evaporation in the Early Twenty-First Century by Means of a Generalized Complementary Approach

Author:

Brutsaert Wilfried1,Cheng Lei2,Zhang Lu3

Affiliation:

1. School of Civil and Environmental Engineering, Cornell University, Ithaca, New York

2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, and Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan, China

3. CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Abstract

AbstractA generalized implementation of the complementary principle was applied to estimate global land surface evaporation and its spatial distribution. The single parameter in the method was calibrated as a function of aridity index, mainly on the basis of runoff and precipitation data for 524 catchments in different parts of the world. The spatial distribution of annual evaporation from Earth’s land surfaces for 2001–13 was then calculated at a spatial resolution of 0.5°, by means of an available global net radiation dataset (commonly referred to as CERES SYN1deg-Day) and a global forcing dataset (referred to as CRU-NCEP v7) for near-surface temperature, humidity, wind speed, and air pressure. The results are shown to agree with reliable previous estimates by more elaborate methods. The global average evaporation for 2001–13 was found to be 472.65 mm a−1 or 36.96 W m−2. The present method should allow not only future updates but also retroactive historical analyses with routine data of net radiation, near-surface air temperature, humidity, wind speed, and precipitation; its main advantage is that the environmental aridity is deduced from atmospheric conditions and requires no knowledge of surface characteristics, such as soil moisture, vegetation, and terrain, which are highly variable and often difficult to quantify at larger spatial scales. Because they are strictly measurement based, the results can serve also as a reality check for different aspects of climate and related models.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3