Temperature and Precipitation Variability and Its Effects on Streamflow in the Upstream Regions of the Lancang–Mekong and Nu–Salween Rivers

Author:

Fan Hui1,He Daming1

Affiliation:

1. Asian International Rivers Center of Yunnan University, and Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, China

Abstract

Abstract Hydrological regimes of alpine rivers are highly sensitive to climate variability/change. Temperature and precipitation variability and its effects on streamflow in the upstream regions of the Lancang–Mekong River (LMR) and Nu–Salween River (NSR) are examined in this study based on long-term observational data from 16 meteorological stations and 2 hydrological stations between the 1950s and 2010. This study employs the Mann–Kendall nonparametric test, together with the trend-free prewhitening (TFPW) approach to test trends and the Breaks For Additive Season and Trend (BFAST) method to detect abrupt changes in the hydrometeorological time series. The relations between air temperature, precipitation, and streamflow trends are assessed using random forest regression. The results show significant climate warming and related prevalent positive precipitation trends both at the annual and seasonal scale. A substantial precipitation increase paralleling climate warming, especially in spring, was also observed. However, no consistent abrupt change in meteorological time series was found. The increasing trends of streamflow with climate warming are seen both for the outlets of the LMR and NSR upstream regions, with the abrupt changes occurring in the mid-1960s and the late 1990s, respectively. The relation of streamflow to annual and wet season precipitation is pronounced, especially for the upstream region of the LMR with a percent variance explained of more than 65%. However, the relatively minor linkage of streamflow to air temperature and dry season precipitation may be confounded by the climate warming–driven changes in snowpack, permafrost, glacier, and evapotranspiration. These results could provide further a reference for the regional water resources management under climate change scenarios.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3