Flood Forecasting and Inundation Mapping Using HiResFlood-UCI and Near-Real-Time Satellite Precipitation Data: The 2008 Iowa Flood

Author:

Nguyen Phu1,Thorstensen Andrea1,Sorooshian Soroosh1,Hsu Kuolin1,AghaKouchak Amir1

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

Abstract

Abstract Floods are among the most devastating natural hazards in society. Flood forecasting is crucially important in order to provide warnings in time to protect people and properties from such disasters. This research applied the high-resolution coupled hydrologic–hydraulic model from the University of California, Irvine, named HiResFlood-UCI, to simulate the historical 2008 Iowa flood. HiResFlood-UCI was forced with the near-real-time Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud Classification System (PERSIANN-CCS) and NEXRAD Stage 2 precipitation data. The model was run using the a priori hydrologic parameters and hydraulic Manning n values from lookup tables. The model results were evaluated in two aspects: point comparison using USGS streamflow and areal validation of inundation maps using USDA’s flood extent maps derived from Advanced Wide Field Sensor (AWiFS) 56-m resolution imagery. The results show that the PERSIANN-CCS simulation tends to capture the observed hydrograph shape better than Stage 2 (minimum correlation of 0.86 for PERSIANN-CCS and 0.72 for Stage 2); however, at most of the stream gauges, Stage 2 simulation provides more accurate estimates of flood peaks compared to PERSIANN-CCS (49%–90% bias reduction from PERSIANN-CCS to Stage 2). The simulation in both cases shows a good agreement (0.67 and 0.73 critical success index for Stage 2 and PERSIANN-CCS simulations, respectively) with the AWiFS flood extent. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the probability of detection (0.93) is slightly lower than that of the Stage 2 simulation (0.97). As a trade-off, the false alarm rate for the PERSIANN-CCS simulation (0.23) is better than that of the Stage 2 simulation (0.31).

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3