Soil Moisture Model Calibration and Validation: An ARS Watershed on the South Fork Iowa River

Author:

Coopersmith Evan J.1,Cosh Michael H.1,Petersen Walt A.2,Prueger John3,Niemeier James J.4

Affiliation:

1. Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland

2. NASA Wallops Space Flight Facility, Wallops, Virginia

3. National Laboratory for Agriculture and Environment, Agricultural Research Service, USDA, Ames, Iowa

4. IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Abstract

Abstract Soil moisture monitoring with in situ technology is a time-consuming and costly endeavor for which a method of increasing the resolution of spatial estimates across in situ networks is necessary. Using a simple hydrologic model, the estimation capacity of an in situ watershed network can be increased beyond the station distribution by using available precipitation, soil, and topographic information. A study site was selected on the Iowa River, characterized by homogeneous soil and topographic features, reducing the variables to precipitation only. Using 10-km precipitation estimates from the North American Land Data Assimilation System (NLDAS) for 2013, high-resolution estimates of surface soil moisture were generated in coordination with an in situ network, which was deployed as part of the Iowa Flood Studies (IFloodS). A simple, bucket model for soil moisture at each in situ sensor was calibrated using four precipitation products and subsequently validated at both the sensor for which it was calibrated and other proximal sensors, the latter after a bias correction step. Average RMSE values of 0.031 and 0.045 m3 m−3 were obtained for models validated at the sensor for which they were calibrated and at other nearby sensors, respectively.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3