Data Length Requirements for Observational Estimates of Land–Atmosphere Coupling Strength

Author:

Findell Kirsten L.1,Gentine Pierre2,Lintner Benjamin R.3,Guillod Benoit P.4

Affiliation:

1. Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

2. Department of Earth and Environmental Engineering, and Earth Institute, Columbia University, New York, New York

3. Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

4. Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Abstract

Abstract Multiple metrics have been developed in recent years to characterize the strength of land–atmosphere coupling in regional and global climate models. Evaluation of these metrics against observations has proven challenging because of limited observations and/or metric definitions based on model experimental designs that are not replicable with observations. Additionally, because observations are limited in time, with only a single realization of the earth’s climate available, metrics of land–atmosphere coupling strength typically assume stationarity and ergodicity, so that an observed time series (or set of time series) can be used in place of an ensemble mean of multiple realizations. The present study evaluates the observational data requirements necessary for robust quantification of a suite of land–atmosphere coupling metrics previously described in the literature. It is demonstrated that the amount of data required to obtain robust estimates of metrics assessing relationships between variables is greater than that necessary to constrain means of directly measured observables. Moreover, while the addition of unbiased noise does not significantly alter the mean of a directly observable quantity, inclusion of such noise degrades metrics based on connections between variables, yielding a unidirectional and negative impact on metric strength estimates. This analysis suggests that longer records of surface observations are required to correctly estimate land–atmosphere coupling strength than are required to estimate mean values of the observed quantities.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3