A Parameterization of the Probability of Snow–Rain Transition

Author:

Sims Elizabeth M.1,Liu Guosheng1

Affiliation:

1. Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida

Abstract

Abstract When estimating precipitation using remotely sensed observations, it is important to correctly classify the phase of precipitation. A misclassification can result in order-of-magnitude errors in the estimated precipitation rate. Using global ground-based observations over multiple years, the influence of different geophysical parameters on precipitation phase is investigated, with the goal of obtaining an improved method for determining precipitation phase. The parameters studied are near-surface air temperature, atmospheric moisture, low-level vertical temperature lapse rate, surface skin temperature, surface pressure, and land cover type. To combine the effects of temperature and moisture, wet-bulb temperature, instead of air temperature, is used as a key parameter for separating solid and liquid precipitation. Results show that in addition to wet-bulb temperature, vertical temperature lapse rate affects the precipitation phase. For example, at a near-surface wet-bulb temperature of 0°C, a lapse rate of 6°C km−1 results in an 86% conditional probability of solid precipitation, while a lapse rate of −2°C km−1 results in a 45% probability. For near-surface wet-bulb temperatures less than 0°C, skin temperature affects precipitation phase, although the effect appears to be minor. Results also show that surface pressure appears to influence precipitation phase in some cases; however, this dependence is not clear on a global scale. Land cover type does not appear to affect precipitation phase. Based on these findings, a parameterization scheme has been developed that accepts available meteorological data as input and returns the conditional probability of solid precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3