Performance Assessment of New Land Surface and Planetary Boundary Layer Physics in the WRF-ARW

Author:

Gilliam Robert C.1,Pleim Jonathan E.1

Affiliation:

1. Atmospheric Modeling and Analysis Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Abstract

Abstract The Pleim–Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and have been used extensively by the air quality modeling community, so there was a need based on several factors to extend these parameterizations to WRF. Simulations executed with the new WRF physics are compared with simulations produced with the MM5 and another WRF configuration with a focus on the replication of near-surface meteorological conditions and key planetary boundary layer features. The new physics in WRF is recommended for retrospective simulations, in particular, those used to drive air quality simulations. In the summer, the error of all variables analyzed was slightly lower across the domain in the WRF simulation that used the new physics than in the similar MM5 configuration. This simulation had an even lower error than the other more common WRF configuration. For the cold season case, the model simulation was not as accurate as the other simulations overall, but did well in terms of lower 2-m temperature error in the western part of the model domain (plains and Rocky Mountains) and most of the Northeast. Both MM5 and the other WRF configuration had lower errors across much of the southern and eastern United States in the winter. The 2-m water vapor mixing ratio and 10-m wind were generally well simulated by the new physics suite in WRF when contrasted with the other simulations and modeling studies. Simulated planetary boundary layer features were compared with both wind profiler and aircraft observations, and the new WRF physics results in a more precise wind and temperature structure not only in the stable boundary layer, but also within most of the convective boundary layer. These results suggest that the WRF performance is now at or above the level of MM5. It is thus recommended to drive future air quality applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

1. Meteorological modeling protocol for application to PM2.5/haze/ozone modeling projects.;Baker,2004

2. Data processing algorithms used by NOAA’s Wind Profiler Demonstration Network.;Barth;Ann. Geophys.,1994

3. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System.;Byun;Appl. Mech. Rev.,2006

4. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor development.;Daniels,2004

5. Evaluation of interregional transport using the MM5–SCIPUFF System.;Deng;J. Appl. Meteor.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3