Affiliation:
1. University of Virginia, Charlottesville, Virginia
2. National Center for Atmospheric Research,# Boulder, Colorado
Abstract
Abstract
First results are presented from the deployment of the NCAR Raman-Shifted Eye-Safe Aerosol Lidar (REAL) in the Owens Valley of California during the Terrain-Induced Rotor Experiment (T-REX) in March and April 2006. REAL operated in range–height indicator (RHI) and plan position indicator (PPI) scanning modes to observe the vertical and horizontal structures of the aerosol and cloud distribution in a broad valley in the lee of a tall mountain range. The scans produce two-dimensional cross sections that when animated produce time-lapse visualizations of the microscale and mesoscale atmospheric structures and dynamics. The 2-month dataset includes a wide variety of interesting atmospheric phenomena. When the synoptic-scale flow is strong and westerly, the lidar data reveal mountain-induced waves, hydraulic jumps, and rotorlike circulations that lift aerosols to altitudes of more than 2 km above the valley. Shear instabilities occasionally leading to breaking waves were observed in cloud and aerosol layers under high wind conditions. In quiescent conditions, the data show multiple aerosol layers, upslope flows, and drainage flows interacting with valley flows. The results demonstrate that a rapidly scanning, eye-safe, ground-based aerosol lidar can be used to observe important features of clear-air atmospheric flows and can contribute to an improved understanding of mountain-induced meteorological phenomena. The research community is encouraged to use the dataset in support of their observational analysis and modeling efforts.
Publisher
American Meteorological Society
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献