Comparison of GPCP Monthly and Daily Precipitation Estimates with High-Latitude Gauge Observations

Author:

Bolvin David T.1,Adler Robert F.2,Huffman George J.1,Nelkin Eric J.1,Poutiainen Jani P.3

Affiliation:

1. Laboratory for Atmospheres, NASA Goddard Space Flight Center, and Science Systems and Applications, Inc., Lanham, Maryland

2. Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

3. Finnish Meteorological Institute, Helsinki, Finland

Abstract

Abstract Monthly and daily products of the Global Precipitation Climatology Project (GPCP) are evaluated through a comparison with Finnish Meteorological Institute (FMI) gauge observations for the period January 1995–December 2007 to assess the quality of the GPCP estimates at high latitudes. At the monthly scale both the final GPCP combination satellite–gauge (SG) product is evaluated, along with the satellite-only multisatellite (MS) product. The GPCP daily product is scaled to sum to the monthly product, so it implicitly contains monthly-scale gauge influence, although it contains no daily gauge information. As expected, the monthly SG product agrees well with the FMI observations because of the inclusion of limited gauge information. Over the entire analysis period the SG estimates are biased low by 6% when the same wind-loss adjustment is applied to the FMI gauges as is used in the SG analysis. The interannual anomaly correlation is about 0.9. The satellite-only MS product has a lesser, but still reasonably good, interannual correlation (∼0.6) while retaining a similar bias due to the use of a climatological bias adjustment. These results indicate the value of using even a few gauges in the analysis and provide an estimate of the correlation error to be expected in the SG analysis over ocean and remote land areas where gauges are absent. The daily GPCP precipitation estimates compare reasonably well at the 1° latitude × 2° longitude scale with the FMI gauge observations in the summer with a correlation of 0.55, but less so in the winter with a correlation of 0.45. Correlations increase somewhat when larger areas and multiday periods are analyzed. The day-to-day occurrence of precipitation is captured fairly well by the GPCP estimates, but the corresponding precipitation event amounts tend to show wide variability. The results of this study indicate that the GPCP monthly and daily fields are useful for meteorological and hydrological studies but that there is significant room for improvement of satellite retrievals and analysis techniques in this region. It is hoped that the research here provides a framework for future high-latitude assessment efforts such as those that will be necessary for the upcoming satellite-based Global Precipitation Measurement (GPM) mission.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3