Transfer of Satellite Rainfall Uncertainty from Gauged to Ungauged Regions at Regional and Seasonal Time Scales

Author:

Tang Ling1,Hossain Faisal1,Huffman George J.2

Affiliation:

1. Department of Civil and Environmental Engineering, Tennessee Technological University, Cookeville, Tennessee

2. Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Laboratory for Atmospheres, Greenbelt, Maryland

Abstract

Abstract Hydrologists and other users need to know the uncertainty of the satellite rainfall datasets across the range of time–space scales over the whole domain of the dataset. Here, “uncertainty” refers to the general concept of the “deviation” of an estimate from the reference (or ground truth) where the deviation may be defined in multiple ways. This uncertainty information can provide insight to the user on the realistic limits of utility, such as hydrologic predictability, which can be achieved with these satellite rainfall datasets. However, satellite rainfall uncertainty estimation requires ground validation (GV) precipitation data. On the other hand, satellite data will be most useful over regions that lack GV data, for example developing countries. This paper addresses the open issues for developing an appropriate uncertainty transfer scheme that can routinely estimate various uncertainty metrics across the globe by leveraging a combination of spatially dense GV data and temporally sparse surrogate (or proxy) GV data, such as the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and the Global Precipitation Measurement (GPM) mission dual-frequency precipitation radar. The TRMM Multisatellite Precipitation Analysis (TMPA) products over the United States spanning a record of 6 yr are used as a representative example of satellite rainfall. It is shown that there exists a quantifiable spatial structure in the uncertainty of satellite data for spatial interpolation. Probabilistic analysis of sampling offered by the existing constellation of passive microwave sensors indicate that transfer of uncertainty for hydrologic applications may be effective at daily time scales or higher during the GPM era. Finally, a commonly used spatial interpolation technique (kriging), which leverages the spatial correlation of estimation uncertainty, is assessed at climatologic, seasonal, monthly, and weekly time scales. It is found that the effectiveness of kriging is sensitive to the type of uncertainty metric, time scale of transfer, and the density of GV data within the transfer domain. Transfer accuracy is lowest at weekly time scales with the error doubling from monthly to weekly. However, at very low GV data density (<20% of the domain), the transfer accuracy is too low to show any distinction as a function of the time scale of transfer.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3