NARR’s Atmospheric Water Cycle Components. Part II: Summertime Mean and Diurnal Interactions

Author:

Ruane Alex C.1

Affiliation:

1. NASA Goddard Institute for Space Studies, and NASA/Oak Ridge Associated Universities Postdoctoral Program, and Sigma Space Partners LLC, New York, New York

Abstract

Abstract Summertime interactions in the North American Regional Reanalysis (NARR) atmospheric water cycle are examined from a user’s perspective over the 1980–99 period with a particular emphasis on the diurnal cycle, the nocturnal maximum of precipitation over the Midwest, and the impacts of precipitation assimilation. NARR’s full-year mean atmospheric water cycle and its annual variations are examined in Part I of this study. North American summertime (June–August) features substantial convective activity that is often organized on a diurnal scale, although diverse regional diurnal features are evident to various extents in high-resolution precipitation products. NARR’s hourly assimilation of precipitation observations over the continental United States allows it to resolve diurnal effects on the water cycle, but in other regions the diurnal cycle of precipitation is imposed from an external reanalysis model. The prominent nocturnal maximum in precipitation across the upper Midwest is captured in NARR, but different precipitation assimilation sources disrupt the propagation of convective systems across the Canadian border. Normalized covariances of NARR’s diurnal water cycle component interactions in the nocturnal maximum region reveal a strong relationship between moisture convergence and precipitation, and also measure the way in which the precipitable water column holds a lagged response between evaporation and precipitation. In many regions the diurnal cycle of rainfall is driven by interactions with water cycle components that differ from those driving the seasonal cycle. A comparison between NARR’s precipitation and an estimate of the model precipitation prior to precipitation assimilation distinguishes the portion of the water cycle captured in full by the model and that which is value added by the assimilation routine. The nocturnal rainfall maximum is not present in the model precipitation estimate, leading to diurnal-scale biases in the evaporation and moisture flux convergence fields that are not directly modified by precipitation assimilation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3