Temporal Variability of Fair-Weather Cumulus Statistics at the ACRF SGP Site

Author:

Berg Larry K.1,Kassianov Evgueni I.1

Affiliation:

1. Pacific Northwest National Laboratory, Richland, Washington

Abstract

Abstract Continental fair-weather cumuli exhibit significant diurnal, day-to-day, and year-to-year variability. This study describes the climatology of cloud macroscale properties, over the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. The diurnal cycle of cloud fraction, cloud-base height, cloud-top height, and cloud thickness were well defined. The cloud fraction reached its maximum value near 1400 central standard time. The average cloud-base height increased throughout the day, while the average cloud thickness decreased with time. In contrast to the other cloud properties, the average cloud-chord length remained nearly constant throughout the day. The sensitivity of the cloud properties to the year-to-year variability of precipitation and day-to-day changes in the height of the lifting condensation level (zLCL) and surface fluxes were compared. The cloud-base height was found to be sensitive to both the year, zLCL, and the surface fluxes of heat and moisture; the cloud thickness was found to be more sensitive to the year than to zLCL; the cloud fraction was sensitive to both the low-level moisture and the surface sensible heat flux; and cloud-chord length was sensitive to zLCL. Distributions of the cloud-chord length over the ACRF SGP site were computed and were well fit by an exponential distribution. The contribution to the total cloud fraction by clouds of each cloud-chord length was computed, and it was found that the clouds with a chord length of about 1 km contributed most to the observed cloud fraction. This result is similar to observations made with other remote sensing instruments or in modeling studies, but it is different from aircraft observations of the contribution to the total cloud fraction by clouds of different sizes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3