Bayesian Design and Analysis for Superensemble-Based Climate Forecasting

Author:

Berliner L. Mark1,Kim Yongku1

Affiliation:

1. Department of Statistics, The Ohio State University, Columbus, Ohio

Abstract

Abstract The authors develop statistical data models to combine ensembles from multiple climate models in a fashion that accounts for uncertainty. This formulation enables treatment of model specific means, biases, and covariance matrices of the ensembles. In addition, the authors model the uncertainty in using computer model results to estimate true states of nature. Based on these models and principles of decision making in the presence of uncertainty, this paper poses the problem of superensemble experimental design in a quantitative fashion. Simple examples of the resulting optimal designs are presented. The authors also provide a Bayesian climate modeling and forecasting analysis. The climate variables of interest are Northern and Southern Hemispheric monthly averaged surface temperatures. A Bayesian hierarchical model for these quantities is constructed, including time-varying parameters that are modeled as random variables with distributions depending in part on atmospheric CO2 levels. This allows the authors to do Bayesian forecasting of temperatures under different Special Report on Emissions Scenarios (SRES). These forecasts are based on Bayesian posterior distributions of the unknowns conditional on observational data for 1882–2001 and climate system model output for 2002–97. The latter dataset is a small superensemble from the Parallel Climate Model (PCM) and the Community Climate System Model (CCSM). After summarizing the results, the paper concludes with discussion of potential generalizations of the authors’ strategies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3