Variations of Twentieth-Century Temperature and Precipitation Extreme Indicators in the Northeast United States

Author:

Griffiths Michael L.1,Bradley Raymond S.1

Affiliation:

1. Climate System Research Center, Department of Geosciences, University of Massachusetts—Amherst, Amherst, Massachusetts

Abstract

Abstract An examination of five temperature and five precipitation extreme indicators reveals an increase in both temperature and precipitation extremes over the 1926–2000 period in the northeast United States, with most of this increase occurring over the past four decades. Empirical orthogonal function (EOF) analysis of winter frost days (FD) and warm nights (TN90) and also winter consecutive dry days (CDD) and very wet days (R95T) over the 1950–2000 period reveals that some of the variability associated with changes in these extremes may be explained by variations in the Arctic Oscillation (AO), El Niño–Southern Oscillation (ENSO), and Pacific–North American (PNA) pattern. The most prominent feature of these results was the high correlation between the leading EOF of frost days and warm nights and the AO. Winter composites of temperature and precipitation extreme indicators were examined for different phases of the AO and ENSO during the 1926–2000 period. Overall, the AO is a better predictor of winter warm nights, while the ENSO is a better predictor of consecutive dry days in the northeast United States.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference37 articles.

1. Global observed changes in daily climate extremes of temperature and precipitation.;Alexander;J. Geophys. Res.,2006

2. Characteristics of daily and extreme temperatures over Canada.;Bonsal;J. Climate,2001

3. Relation of New England hydroclimate to large-scale atmospheric circulation patterns.;Bradbury;J. Amer. Water Resour. Assoc.,2002

4. Use of statistical methods in the search for teleconnections: Past, present, and future.;Brown,1991

5. The global climate for June–August 1989: A season of near-normal conditions in the tropical Pacific.;Chelliah;J. Climate,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3