Weather Forecasts by the WRF-ARW Model with the GSI Data Assimilation System in the Complex Terrain Areas of Southwest Asia

Author:

Xu J.1,Rugg S.2,Byerle L.2,Liu Z.3

Affiliation:

1. University Corporation for Atmospheric Research, Boulder, Colorado, and Air Force Weather Agency, Offutt Air Force Base, Nebraska, and Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

2. Air Force Weather Agency, Offutt Air Force Base, Nebraska

3. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract This paper will first describe the forecasting errors encountered from running the National Center for Atmospheric Research (NCAR) mesoscale model (the Advanced Research Weather Research and Forecasting model; ARW) in the complex terrain of southwest Asia from 1 to 31 May 2006. The subsequent statistical evaluation is designed to assess the model’s surface and upper-air forecast accuracy. Results show that the model biases caused by inadequate parameterization of physical processes are relatively small, except for the 2-m temperature, as compared to the nonsystematic errors resulting in part from the uncertainty in the initial conditions. The total model forecast errors at the surface show a substantial spatial heterogeneity; the errors are relatively larger in higher mountain areas. The performance of 2-m temperature forecasts is different from the other surface variables’ forecasts; the model forecast errors in 2-m temperature forecasts are closely related to the terrain configuration. The diurnal cycle variation of these near-surface temperature forecasts from the model is much smaller than what is observed. Second, in order to understand the role of the initial conditions in relation to the accuracy of the model forecasts, this study assimilated a form of satellite radiance data into this model through the Joint Center for Satellite Data Assimilation (JCSDA) analysis system called the Gridpoint Statistical Interpolation (GSI). The results indicate that on average over a 30-day experiment for the 24- and 48-h (second 24 h) forecasts, the satellite data provide beneficial information for improving the initial conditions and the model errors are reduced to some degree over some of the study locations. The diurnal cycle for some forecasting variables can be improved after satellite data assimilation; however, the improvement is very limited.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3