Reduction of Middle-Atmospheric Forecast Bias through Improvement in Satellite Radiance Quality Control

Author:

Kim Young-Joon1,Campbell William F.1,Swadley Steven D.1

Affiliation:

1. Naval Research Laboratory, Monterey, California

Abstract

Abstract This article discusses a practical problem faced in operational atmospheric forecasting and data assimilation, and efforts to improve forecast quality through the choice of quality control parameters. The need to utilize as much data as possible must be carefully balanced against the need to reject observations deemed erroneous because they are far from the background value. Alleviation of forecast bias in the middle atmosphere for a global atmospheric prediction system is attempted via improvement of the quality control and bias correction of the satellite radiance data; in particular, the sensitivity of the analysis to the satellite radiance outlier check parameters for the Naval Research Laboratory’s three-dimensional variational data assimilation system [Naval Research Laboratory Atmospheric Variational Data Assimilation System (NAVDAS)] is investigated. A series of forecast experiments are performed with an extended-top (0.04 hPa or ∼65 km) version of the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS) for the month of January 2007. The experiments vary the prescribed radiance observation error variance for the Advanced Microwave Sounding Unit-A (AMSU-A) and the tolerance factors for the AMSU-A and NAVDAS quality control processes. The biases of geopotential height, temperature, and wind in the middle atmosphere are significantly reduced when the observation error limit for the highest-altitude AMSU-A channel (i.e., 14) is relaxed from 0.95 to 3 K and the tolerance factors for the AMSU-A and NAVDAS quality control processes are relaxed from 3 to 4. The improvement is due to assimilation of more high quality AMSU-A radiance data from the highest-peaking channel.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference11 articles.

1. Interaction between bias correction and quality control.;Auligné;Quart. J. Roy. Meteor. Soc.,2007

2. The impact of AMSU-A radiance assimilation in the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS).;Baker,2004

3. The impact of AMSU-A radiance assimilation in the U.S. Navy’s Operational Global Atmospheric Prediction System (NOGAPS).;Baker,2005

4. NAVDAS Source Book 2001: The NRL Atmospheric Variational Data Assimilation System.;Daley,2001

5. NAVDAS: Formulation and diagnostics.;Daley;Mon. Wea. Rev.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3