Detection of Bow Echoes in Kilometer-Scale Forecasts Using a Convolutional Neural Network

Author:

Mounier Arnaud1,Raynaud Laure1,Rottner Lucie1,Plu Matthieu1,Arbogast Philippe2,Kreitz Michaël3,Mignan Léo24,Touzé Benoît24

Affiliation:

1. a CNRM, University of Toulouse, Météo-France, CNRS, Toulouse, France

2. b Forecasting Department, Météo-France, Toulouse, France

3. c National Meteorological School, Météo-France, Toulouse, France

4. d Forecasting Department, Météo-France, Rennes, France

Abstract

Abstract Bow echoes (BEs) are bow-shaped lines of convective cells that are often associated with swaths of damaging straight-line winds and small tornadoes. This paper describes a convolutional neural network (CNN) able to detect BEs directly from French kilometer-scale model outputs in order to facilitate and accelerate the operational forecasting of BEs. The detections are only based on the maximum pseudoreflectivity field predictor (“pseudo” because it is expressed in mm h−1 and not in dBZ). A preprocessing of the training database is carried out in order to reduce imbalance issues between the two classes (inside or outside bow echoes). A CNN sensitivity analysis against a set of hyperparameters is done. The selected CNN configuration has a hit rate of 86% and a false alarm rate of 39%. The strengths and weaknesses of this CNN are then emphasized with an object-oriented evaluation. The BE largest pseudoreflectivities are correctly detected by the CNN, which tends to underestimate the size of BEs. Detected BE objects have wind gusts similar to the hand-labeled BE. Most of the time, false alarm objects and missed objects are rather small (e.g., <1500 km2). Based on a cooperation with forecasters, synthesis plots are proposed that summarize the BE detections in French kilometer-scale models. A subjective evaluation of the CNN performances is also reported. The overall positive feedback from forecasters is in good agreement with the object-oriented evaluation. Forecasters perceive these products as relevant and potentially useful to handle the large amount of available data from numerical weather prediction models.

Publisher

American Meteorological Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3